SOLUTIONS Of **J.E.E.(Main)2018**

(These 26 Questions out of 30 were taught directly in the Classroom by

Prof. MUKUL JHA)

- 61. Diffraction & YDSE 1^{st} Diffraction minima --- d.sin30 = 1λ Hence $\lambda = d/2$ (YDSE) Fringe Width $\beta = \lambda D/d' = 0.01$ -- On calculation $d' = 25 \mu m$ Ans.(4)
- **63.** Electronics & Circuit Potential barrier in Silicon is 0.7V, while in Germanium it is 0.3V Current , I = (3-0.7)/200 A = 11.5 mA Ans.(2)
- **64.** Errors in Measurements Density $d = Mass/Volume = M/L^3$ Hence $\Delta d/d = 1$. $\Delta M/M + 3$. $\Delta L/L = 1.5 + 3.(1) = 4.5\%$ Ans.(2)
- **65.** Cyclotron Radius $r = \sqrt{(2mK)/qB}$ $r_e = \sqrt{(2m_e K)/eB}$ $r_p = \sqrt{(2m_p K)/eB}$ $r_\alpha = \sqrt{(2x4m_p K)/2eB} = \sqrt{(2m_e K)/eB} = r_p$ Hence, $r_e < r_p = r_\alpha$ Ans.(1)
- 66. Electrostatics $V = Kq_A / r_B + Kq_B / r_B + Kq_C / r_C$ = $1/4\pi\epsilon_0 (\sigma.4\pi a^2/b - \sigma.4\pi b^2/b + \sigma.4\pi c^2/c)$ = $\sigma/\epsilon_0 [(a^2 - b^2)/b + c]$... Ans.
- 67. Friction For equilibrium .. $\mu(m+10)g = 5g$ 0.15(m+10) = 5 m+10 =500/15 m = 23.3 kg ... no option correct... nearest Ans. 27.3 kgAns. (1)
- 68. IRODOV CLASS Attractive Force $F = -dU/dr = -(-K/2)(-2) / r^3 = -K/r^3$ For Circular Motion- by Newton's Law $K/r^3 = mv^2 / r$ Hence $mv^2 = K/r^2$ Kinetic Energy, $K' = 1/2mv^2 = K/2a^2$ Total Energy $E = KE + PE = K/2a^2 + (-K/2a^2) = 0$ Ans.(2)
- 69. Capacitors Q = KC/V = (5/3)*90*20 = 3000pC = 3nCInduced charge on dielectric Q' = Q[1-(1/K)] = 3[1-3/5] = 1.2 nCAns. (4)
- 70. S.H.Motion Frequency = $1/2\pi\sqrt{(k/m)} = 10^{12}$ $m = mass of one atom = 108/(6.02*10^{23})*10^{-3} kg$ On solving we can get k = 7.1N/mAns. (1)
- 71. Collisions For elastic collision apply formula... $v_t = (m-2m)/(m+2m).u = u_1/3$ Fractional loss = $[1/2mu_1^2 1/2m(u_1/3)^2]/(1/2mu_1^2) = 8/9 = 0.89$ Similarly for 2^{nd} collision between m and 12m Fractional loss = 48/169 = 0.28 ...Ans (4)
- 72. Magnetic Field by Current Dipole moment of circular loop = μ =NIA= 1.I. π R² Magnetic field at centre $B_1 = \mu_0$ I/2R Moment becomes double if new radius = R $\sqrt{2}$, as current I has to be kept constant New magnetic field at centre $B_2 = \mu_0$ I/(2R $\sqrt{2}$) = B_1 / $\sqrt{2}$ Hence, B_1 / B_2 = $\sqrt{2}$ Ans.(2)
- 73. Potentiometer (IRODOV CLASS) $r = R(L/L' 1) = 5.(52/40-1) = 3/2 = 1.5\Omega$ Ans. (1)

Communication System 10% of 10 Ghz = n. 5 kHz where n is the total no of channels 74. $n = 2*10^5$ Channels $0.10*10*10^9 = n.5*10^3$ As I' = I/2, Transmission axis of A and B are parallel 75. Polarization Now, $(1/2 \text{ I } \cos^2\theta)$. $\cos^2\theta = 1/8$, from B ... $\cos^4\theta = 1/4$ $\cos\theta = 1/\sqrt{2}$ Ans.(2 Hence $\theta = 45^{\circ}$ M.I. of removed part about axis through C of bigger disc 77. **Rotational Dynamics** = I + Md² = \hat{M} .(R/3)² + M. (2R/3)² = MR²/2 Ans(4) On superposition, $MI = 9MR^2/2 - MR^2/2 = 4MR^2$ Speed of e.m.waves = $1/\sqrt{\epsilon\mu}$ 79. Electromagnetic Waves Speed in air = $\omega/k = c$ and speed in medium = $\omega/k = c/2$ = 1/4... Ans.(2) Hence ratio $c/(c/2) = 2 = \sqrt{(\epsilon_2/\epsilon_1)}$ Hence $\varepsilon_1/\varepsilon_2$ Alternating Current Quality Factor for sharpness of resonance , $Q = \omega_0$ L/R in LCR Circuit 80. Ans.(4) Distance time graph indicates that velocity increases from 0, 81. 1-d Motion Graphs then decreases (slope ds/dt = v) But all other graphs indicate that velocity decreases first, then increases. Hence, incorrect graph is (1). Ans.(1) Electrical Circuits(IRODOV CLASS) - Equivalent EMF = [12*2 + 13*1]/ [2+1]=37/3V 82. Eqv internal resistance of cells = $(2*1)/(2+1) = 2/3\Omega$ Main current i = (37/3) / [10+(2/3)] = 37/32 APotential diff. Across 10Ω , V=iR=37*10/32=11.56 V ... Ans.(1) 102 Hence $\omega \alpha (1/R^{(n+1)/2})$ Hence $\omega^2 \alpha (1/R^{n+1})$ $m\omega^2 R = k/R^n$ 83. Satellite Motion Now $T = 2\pi/\omega$ $T\alpha R^{(n+1)/2}$... Ans.(2) 84. Bohr Model of H- Atom Series Limit implies last line of Lyman and Pfund Series (n=5) For Pfund Series $hv_P = 13.6e/5^2$ For Lyman Series $hv_L = 13.6e$ Hence $v_P = v_L / 25$... Ans.(2) Adiabatic process $T.V^{\gamma-1} = Constant$ $T_1 . V_1^{\gamma-1} = T_2 . V_2^{\gamma-1}$ 86. Thermodynamics For monoatomic gas y = 5/3 $T_2 = T_1 [V_2 / V_1]^{r-1} = 300.[V/2V]^{r-1} = 189 K$ Change in Internal Energy $\Delta U = n$. D/2.R. $\Delta T = 2.(3/2).(8.3).(189-300) = -2.7 kJ ... Ans(2)$ Elasticity Bulk Modulus, K = dp/(dV/V) = mg/a(dV/V) dV/V = mg/Ka----(1)87. Volume of sphere, $V = 4/3\pi R$ Hence dV/V = 3.dr/r ----- (2) By eqn (1) and (2), 3.dr/r = mg/Kadr/r = mg/3Ka.. Ans(2) Sound Speed of wave $v = \sqrt{Y/p} = 5.85* 10^3$ m/s As rod is clamped at mid $\lambda/4 = L/2$, 88. $\lambda = 2L=1.2m$ Frequency $v = v/\lambda = 5.85* 10^3 / 1.2 = 4.88* 10^3 Hz = 5 kHz$.. Ans(4) $F = dp/dt = N.2mvcos45^{\circ}/t$ cus 45 (collides) 89. Pressure = F/A = (N/t). 2mvcos45° $/A = 2.35*10^3 N/m^2$ Fixed .. Ans(4) Nice Conceptual Numericals Vam45° ALL DIRECT FROM CLASSROOM LECTURES