Jee Advanced 2015 PHYSICS Paper - 2

INTEGER ANSWER QUESTIONS:-

- **Q.1.** The densities of two solid spheres A and B of same radii R vary with radial distance r as $\rho_A(r)=k(r/R)$ and $\rho_B(r)=k(r/R)^5$ respectively, where k is constant. The moments of inertia of indvidual spheres about axes passing through their centres are I_A and I_B , respectively. If (I_B/I_A) = n/10, the value of n is
- **Q.2.** Four harmnic waves of equal frequencies and equal intensities I_0 have phase angles 0, $\pi/3$, $2\pi/3$ and π . When they are superposed, the intensities of resulting wave is nI_0 . The value of n is
- **Q.3.** For a radioactive material, its activity A and rate of change of its activity R are defined as A = -(dN/dt) and R = -(dA/dt), where N(t) is the number of nuclei at time t. Two radioactive sources P (mean life τ) and Q (mean life 2τ) have same activity at t=0. Their rates of change of activities at t=2 τ are R_P and R_O ,respectively. If (R_P/R_O) = (n/e), then the value of n is
- **Q.5.** In the following circuit, the current through the resistor $R(=2\Omega)$ is I Amperes. The value of I is
- **Q.6.** An electron in an excited state of Li^{2+} ion has angular momentum (3h/2 π). The de Broglie wavelength of the electron in this state is $p\pi a_0$ (where a_0 is the Bohr radius). The value of p is
- **Q.7.** A large spherical mass M is fixed at one position and two identical point masses m are kept on a line passing through the centre of M (see figure). The point masses are connected by a rigid massless rod of length I and this assembly is free to move along the line connecting them. All three masses interact only through their mutual gravitational interaction. When the point mass mearer to M is at a distance r = 3I from M, the tension in the rod is zero for m = k(M/288). The value of k is
- **Q.8.** The energy of a system as a function of time t is given as $E(t) = A^2 e^{-\alpha t}$, where $\alpha = 0.2 s^{-1}$. The measurement of A has an error of 1.25%. If the error in the measurement of time is 1.50%, the percentage error in the value of E(t) at t=5 s is

MULTIPLE CHOICE QUESTIONS :-

(B) 5/3

(A) 6/5

Q.9.	A parallel plate capacitor having plates of area S and the plate seperation d, has
capac	itance C_1 in air. When two dielectrics of different relative permittivities (ϵ_1 = 2 and ϵ_2 = 4)
are in	troduced between the two plates as shown in the figure, the capacitance becomes C ₂ .
The ra	tio (C_1/C_2) is

(C) 7/5

(D) 7/3

Q.10. An ideal monoatomic gas is confined in a horizontal cylinder by a spring loaded pistor
(as shown i the figure). Initially the gas is at temperature T_1 , pressure P_1 and volume V_1 and
the spring is in the relaxed state. The gas is then heated very slowly to temperature T ₂ ,
pressure P ₂ and volume V ₂ . During the process the piston moves out by a distance x. Ignoring
the friction between the piston and the cylinder, correct statement(s) is (are)

- (A) If $V_2 = 2V_1$ and $T_2 = 3T_1$, then the energy stored in the spring is $(1/4)P_1V_1$
- (B) If $V_2 = 2V_1$ and $T_2 = 3T_1$, then the change in internal energy is $3P_1V_1$
- (C) If $V_2 = 3V_1$ and $T_2 = 4T_1$, then the work done by the gas is $(7/3)P_1V_1$
- (D) If $V_2 = 3V_1$ and $T_2 = 4T_1$, then the heat supplied to the gas is $(17/6)P_1V_1$
- **Q.11.** A fission reaction is given by $_{92}U^{236}$ --> $_{54}Xe^{140}$ + $_{38}Sr^{94}$ + x + y , where x and y are two particles. Considering $_{92}U^{236}$ to be at rest, the kinetic energies of the products are denoted by K_{Xe} , K_{Sr} , K_{x} (2 MeV) and K_{y} (2 MeV) , respectively. Let the binding energies per nucleon of $_{92}U^{236}$, $_{54}Xe^{140}$ and $_{38}Sr^{94}$ be 7.5 MeV, 8.5MeV and 8.5 MeV, respectively. Considering different conservation laws, the correct option(s) is (are)
- (A) x=n, y=n, $K_{Sr} = 129$ MeV, $K_{Xe} = 86$ MeV
- (B) x=p, $y=e^{-}$, $K_{Sr} = 129$ MeV, $K_{Xe} = 86$ MeV
- (C) x=p, y=n, $K_{Sr} = 129$ MeV, $K_{Xe} = 86$ MeV
- (D) x=n, y=n, $K_{Sr} = 86 MeV$, $K_{Xe} = 129 MeV$
- **Q.13.** In terms of potential difference V , electric current I, permittivity ϵ_0 , permeability μ_0 and speed of light c, the dimensionally correct equation(s) is (are)
- (A) $\mu_0 I^2 = \epsilon_0 V^2$ (B) $\epsilon_0 I = \mu_0 V$ (C) $I = \epsilon_0 cV$ (D) $\mu_0 cI = \epsilon_0 V$
- **Q.14.** Consider a uniform spherical charge distribution of radius R_1 centred at the origin O. In this distribution, a spherical cavity of radius R_2 , centred at P with distance $OP = a = R_1 R_2$ (see figure) is made. If the electric field inside cavity at position \mathbf{r} is $\mathbf{E}(\mathbf{r})$ then correct statement(s) is (are)
- (A) **E** is uniform, its magnitude is independent of R_2 but its direction depends on **r**
- (A) ${\bf E}$ is uniform, its magnitude is depends on ${\bf R}_2$ and its direction depends on ${\bf r}$
- (A) **E** is uniform, its magnitude is independent of a but its direction depends on **a**
- (A) **E** is uniform, both its magnitude and direction depends on **a**
- **Q.15.** In plotting stress versus strain curves for two materials P and Q, a student by mistake puts strain on the y-axis and stress on the x-axis as shown in the figure. Then the correct statement(s) is (are)
- (A) P has more tensile strength than Q
- (B) P is more ductile than Q
- (C) P is more brittle than Q
- (D) The Young's modulus of P is more than that of Q
- **Q.16.** A spherical body of radius R consists of a fluid of constant density and is in equilibrium under its own gravity. If P(r) is the pressure at r (r < R), then the correct option(s) is (are)

(A)
$$P(r = 0) = 0$$

(B)
$$\{P(r = 3R/4)\}/\{P(r = 2R/3)\} = 63/80$$

(C)
$${P(r = 3R/5)}/{P(r = 2R/5)=16/21}$$

(D)
$$\{P(r = R/2)\}/\{P(r = R/3)\} = 20/27$$

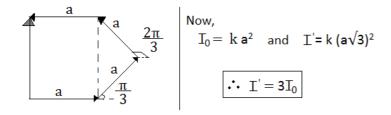
PARAGRAPH TYPE QUESTIONS:-

Q.18. Consider two different metallic strips (1 and 2) of the same dimensions (length I, width w, and thickness d) with carrier densities n_1 and n_2 , respectively. Strip 1 is placed in magnetic field B_1 and strip 2 is placed in magnetic field B_2 , both along positive y-directions. Then V_1 and V_2 are the potential differences developed between K and M in strips 1 and 2, respectively. Assuming that the current I is same for both the strips the correct option(s) is (are)

(A) If
$$B_1 = B_2$$
 and $n_1 = 2n_2$, then $V_2 = 2V_1$

(B) If
$$B_1 = B_2$$
 and $n_1 = 2n_2$, then $V_2 = V_1$

(C) If
$$B_1 = 2B_2$$
 and $n_1 = n_2$, then $V_2 = 0.5V_1$


(D) If
$$B_1 = 2B_2$$
 and $n_1 = n_2$, then $V_2 = V_1$

Jee Advanced Solutions Paper 2

1. As taught in numerical class to derive Moment of Inertia of non - uniform sphere.

$$T_{A} = \int_{0}^{R} \frac{1}{3} \left(k_{\frac{r}{R}} \cdot 4\pi r^{2} dr \right) r^{2} , \quad T_{B} = \int_{0}^{R} \frac{1}{3} \left(k_{\frac{r}{R}} \cdot 4\pi r^{2} dr \right) r^{2} dr \right) r^{2} dr$$

2. Taught directly as Q. 56 of S. H. M. in H. C. Verma.

$$\begin{array}{lll} \underline{\textbf{3.}} & & A_p = A_0 \ e^{-t/\tau} & , & & R_p = -d\theta/dt = (A_0 \ /\tau \) \ e^{-t/\tau} = A_P \ / \ \tau \\ & & A_Q = A_0 \ e^{-t/2\tau} & , & & R_Q = -d\theta/dt = (A_0 \ /2\tau \) \ e^{-t/2\tau} = A_Q \ / \ 2\tau & : . \ R_{P/}R_Q = 2/1 \end{array}$$

5. Taught directly as Balanced Wheatstone Bridge numerical.

6. Taught directly in Theory class of Bohr's Model of H-atom Li⁺⁺.

For Li⁺⁺ , I =
$$3h/2\pi$$
 :. n = 3 => r = (n^2/Z) $a_0 = 3^2/3$ $a_0 = 3a_0$ Also, mv . $3a_0 = 3h/2\pi$ => mv = $h/2\pi a_0$ Hence, $\lambda = h$ / mv = h / ($h/2\pi a_0$) = $2\pi a_0$ = $p\pi a_0$ => $p=3$

7. Taught similar numerical in Gravitation for Equilibrium.

$$\frac{\text{For } F = 0}{F_{M} - F_{m}} = F_{M} + F_{m}$$

$$\Rightarrow \frac{\text{GMm}}{(3l)^{2}} - \frac{\text{Gmm}}{l^{2}} = \frac{\text{GMm}}{(4l)^{2}} + \frac{\text{Gmm}}{l^{2}}$$

$$\Rightarrow \frac{M}{9} - m = \frac{M}{16} + m$$

$$\Rightarrow \frac{m}{M} = \frac{7}{288} = \frac{k}{288} \Rightarrow k = 7$$

8. Similar to the numerical taught in Errors and measurements.

$$E = A^2 \cdot e^{-\alpha t}$$

=> $dE/E = 2 \cdot dA/A + \alpha \cdot t \cdot dt/t = 2 \times 1.25 + 0.2 \times 5 \times 1.5 = 2.5 + 1.5 = 4 \%$:. Ans (a, c)

<u>9.</u> Taught directly in Q. 56 (a),(c) of capacitors in H.C.V.

Similar to solved example of Heat & Thermodynamics H.C.V. <u>10.</u>

Hence, Ans. A, B, C.

<u>12.</u> Similar to that taught in Fluid Mechanics and Terminal Velocity.

For equilibrium, $B_{p} + B_{Q} = W_{p} + W_{Q}$ $\sigma_{1} + \sigma_{2} = \rho_{1} + \rho_{2} \qquad \qquad \qquad \qquad \frac{v_{p}}{v_{Q}} = \frac{n_{1}(\rho_{1} - \sigma_{2})}{n_{2}(\rho_{2} - \sigma_{1})} = -\frac{n_{1}}{n_{2}}$ $Terminal velocity, \ v_{p} = \frac{2}{9n_{2}}r^{2}g\ (\rho_{1} - \sigma_{2})$ $V_{Q} = \frac{2}{9n_{1}}r^{2}g\ (\rho_{2} - \sigma_{1})$ $A \quad \text{and} \quad \overrightarrow{v_{p}}, \overrightarrow{v_{Q}} < 0$ $If \ v_{p} \text{ is up, } v_{Q} \text{ will be down and vice - versa}$ $B_p + B_Q = W_p + W_O$

$$\frac{v_{p}}{v_{Q}} = \frac{n_{1}(\rho_{1} - \sigma_{2})}{n_{2}(\rho_{2} - \sigma_{1})} = -\frac{n_{1}}{n_{2}}$$

13. Directly taught in Units and Dimensions of given terms.

$$[V] = [V/q] = [(M L^2 T^{-2})/IT] = [M L^2 T^{-3} I^{-1}]$$

[
$$\epsilon_0$$
] = [$q_1 q_2 /4\pi r^2 F$] = [IT . IT / $L^2 MLT^{-2}$] = [$M^{-1} L^{-3} T^4 I^2$]

$$[\mu_0] = [1/\epsilon_0 c^2] = [1/M^{-1}L^{-3}T^4I^2.L^2T^{-2}] = [MLT^{-2}I^{-2}]$$
 :. Ans. A, C

Directly taught Numerical in Theory class of ELectrostatics. 14.

Field is uniform (same) for all points inside the cavity and equal to $\mathbf{E} = -\rho \mathbf{a}/3\varepsilon_0$. .. Ans. D

<u>15.</u> Directly taught in theory class of Stress Strain curve for Ductile materials.

 $Y = \frac{Y_Q}{Y_P}$ (Larger slope in Q)

Graph of P has more length. Hence, P has more tensile strength than Q.

Also, Q starts bending first so P is ductile than Q.

<u>17.</u> Directly taught as Q. 29 Hall Effect of H.C.V.

18. If
$$V = I B / ned$$
, if $n_1 = 2n_2$, $v_1 = v_2 / 2$, $v_2 = 2v_1$ and, $n_1 = n_2$, $B_1 = 2B_2$, $v_1 = 2v_2$:. Ans. A, C

19. Directly taught in theory class of Optical Fibres.